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Abstract. Uncertain graphs are getting more and more important. They
allow to tackle fuzzy situations in numerous frameworks. This paper
investigates the issue of generating random graphs based on uncertain
proximity relationships between vertices and the goal is to construct the
most likely graph. The Constraint Programming paradigm was used to
provide a systematic way to release uncertain graphs while maximizing
and minimizing the paths that separate certain vertex pairs. The pro-
posed approach allowed to generate uncertain graphs at a reasonable
time. This is confirmed by experimental results obtained from a series
of tests on several instances. Our solution lays the basis for further
real world applications in different fields, such as analytical chemistry,
telecommunication networks, and civil engineering.
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1 Introduction

In mathematical context, a graph is a non-linear data structure consisting of a
set of vertices and edges that link vertices together. One of the most attractive
features of graphs is their adequacy to model pairwise relationship between
objects. Indeed, such structural information would be useful to represent and
solve relevant computational problems by providing a fairly accurate description
of the problem at hand. Thereby, a random graph is a graph that is generated
by a random process. Historically, the first model of random graphs was defined
by Paul Erdõs [3] to give a probabilistic construction of a graph with large
girth and large chromatic number. Later, there has been a shift of emphasis
toward generating random graphs with prescribed feature constraints such as
vertex degree [16, 15], imposed or forbidden induced sub-graphs [18], proximity
relationships between vertices [17]. Graph theory is a vast subject in which the
goals are relying on various graph properties.

The issue of random graph generation is not recent, but is still important
because its applications are renewable in real-life situations. The growing interest
in this fascinating issue can be attributed to several factors. One factor is
the realization that networks are everywhere. From social networks such as
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Facebook, Twitter, Instagram or Linkedin, the World Wide Web and the Internet
to the complex interactions between isomers in the molecular structures, we face
the challenge of elucidating their structure. By and large natural networks grow
in an unpredictable manner and this is often modeled by a random construction.
Another factor is the realization by Computer Scientists that NP-hard problems
are often easier to solve than their worst-case suggests and that an analysis of
running times on random instances can be informative.

However, generating graphs is commonly a complicated task since it amounts
to the assembly of a set of vertices in all possible ways to ensure exhaustivity
while being consistent with a set of structural constraints such as the number
of vertices, edges, and connections between them. Figure 1 illustrates with an
example case the task of generating constrained random graphs under con-
straints. Let G be a random simple graph to generate defined by a given degree
sequence ∆ � x2, 2, 2, 3, 3, 4, 4y, a set of 7 vertices, a set of 10 edges and other
hard constraint such as imposing a distance of length two separating vertices
1 and 4. The goal is to generate all graphs that satisfy the given input data
set. This configuration gives 249 simple undirected graphs of which 19 graphs
are connected graphs with no symmetry. Of these, only two graphs respect the
proximity relationship constraint between vertices 1 and 4.

Fig. 1. Generating constrained graphs based on degree sequence ∆ � x2, 2, 2, 3, 3, 4, 4y.

Often, the conditions under which the data are obtained are less favorable in
reality. We have, therefore, to deal with data tainted by uncertainties due to a
misinterpretation of real situation. Generally, a large set of graphs are consistent
with a same degree sequence. In such a situation, determining the graph that
models the true real-world situation is not always obvious because of the huge set
of candidate graphs. Therefore, it appears that an intelligent assembly process
is necessary to deal with the combinatorial nature of the problem. The second
challenge comes from the use of uncertain data in order to narrow the set of
candidate graphs. It is possible that after having listed the desired structural
constraints, there is no way to satisfy them all simultaneously. In this case, the
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problem is said to be over-constrained. A way to get around such a situation is
to choose which constraints to ignore. On the other hand, when we get a huge
set of graphs that simultaneously satisfy all the constraints, such graphs appear
equally good, and another challenge consists in benefiting from the available
uncertain information to select the more likely graph among the numerous
candidate graphs.

Although several studies have been dedicated to random graphs in recent
years, some focusing on graph properties [10], others on generation methods
[18, 7]. They are often highly dedicated to specific situations and encounter
difficulties in taking into account the uncertainty nature of some information. In
addition, the assumed constraints are unlikely to occur in real-world situations.
On the other hand, to our knowledge almost half of the structural problems
contain uncertain information as input data. Therefore, an approach for dealing
with uncertain graphs will be of great interest.

The current research was carried out to shed light on the problem of generat-
ing uncertain graphs, where the uncertainty nature comes from Uncertain Prox-
imity Relationships (UPRs) between vertices. A UPR is a proximity relationship
between two vertices for which the topological distance is not known but bounded
(above or below) by a given constant. What is meant by topological distance
is the number of edges that composes the shortest path which connects the
concerned vertex pair. UPRs are of two types: UPRs to maximize (max -UPRs)
and UPRs to minimize (min -UPRs). The min -UPRs type includes uncertain
proximity favoring short topological distances separating vertices. Structural
preferences here state that the shorter the overall min -UPRs distances is, the
more likely the graph is to correspond to the true graph. The second type
of uncertain proximity, that is max -UPR, is basically the first type reversed,
favoring a long topological distance between each vertex pair involved in a
max -UPR. As mentioned above, an UPR is specified by an upper or a lower
bound on the topological distance separating a given vertex pair.

This paper proposes a weighted constraint-based approach providing a sys-
tematic way to generate uncertain graphs, while enforcing uncertain proximity
relationship preferences of certain prescribed vertex pairs. More concretely, we
explore here the use of the Constraint Programming (CP) paradigm to generate
graphs on the basis of a given degree sequence, while maximizing the sum
of all topological distances of max -UPRs preferences and minimizing those of
min -UPRs.

Our interest in UPRs is motivated by their importance as basic data struc-
tures for many real-life applications. For example, in analytical chemistry, the
molecular structure can be considered as a graph and the problem of generating
molecular structure consists in finding all molecular graphs that are consistent
with a dataset derived from different kinds of spectra. Often, this dataset imposes
a set of uncertain inter-atoms proximity relationships for which the topological
distance between interacting atoms cannot be accurately known but rather
bounded by given constants [2]. This issue, besides being interesting, is useful in
a variety of situations and is of great interest not only for chemists, but also to
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biologists, computer scientists, economists, electrical engineers, mathematicians,
neuroscientists and sociologist [23, 2]. From the theoretical point of view, this
problem is NP-hard on general graphs. And to the best of our knowledge,
research on this topic are scarce. A key part of this contribution is to rely on
uncertain proximity relationships to guide the construction process to the most
likely graphs.

The contribution of the paper is three folds. First, we propose a new formu-
lation, precisely the one resorting to Constraint Programming (CP), a paradigm
that has proved to be an adequate framework for dealing with various combi-
natorial optimization problems. So, generating uncertain graphs is encoded as a
Weighted Constraint Satisfaction Problem (WCSP) in an easy and declarative
way that enables an efficient integration of various pieces of structural restric-
tions. Second, we show how this encoding can be employed to get the best we
can from min -UPR restrictions, as well as, from max -UPR restrictions during
the graph generation process. Third, we have succeeded in defining a single ob-
jective function, developed as a soft constraint of the weighted constraint-based
formulation, that combines the two contradictory preferences, max -UPR and
min -UPR to finally get the most likely uncertain graphs.

The rest of the paper is organized as follows: Section 2 and 3, are respectively
devoted to giving preliminary notions of graph theory and constraint program-
ming. Section 4 illustrates our weighted constraint-based approach for generating
uncertain graphs which optimizes the inter-vertices distances revealed by UPRs.
In Section 5, we report a series of experimental results that show the validity and
the efficiency of our approach on several uncertain graph generation instances.

2 Basic Graph Notions

To begin with, we shall expose the theoretical definitions and terminologies
needed to cope with the graph theory framework. In what follows, G=pV,Eq
will designate the graph comprising a non-empty finite set V of vertices related

together with a collection, E�
�
V
2

	
of edges, each of which is an unordered pair

of vertices (undirected). If ti, ju P E, then i and j are adjacent, and the edge ti, ju
is incident to both i and j. For conciseness, ti, ju will be denoted by i-j. The
neighborhood of vertex i is Npiq � tj|i-j P Eu. We set n � |V | and m � |E|. The
degree of a vertex i P V , denoted by degpiq, is the number of edges incident to i.

The integer sequence ∆ � x degp1q, . . . , degpnq y is known as the degree
sequence of G. Giving a real-world example, in a computer network, a pair
of computers is in E, if and only if, they are connected by some medium. If
E contains multiple copies of an edge, that is, E is a multi-set, then G is a
multi-graph.

A chain of G is a sequence of vertices p1, . . . , `q such that, i-i+1 P E, 1 ¤ i  
`, where ` is the length of the chain. A path or in G is a chain p1, . . . , `q in which
i � j, for all 1 ¤ i, j   `. A path in G of length ` is called an `-path of G. Note
that the number of vertices in a `-path is equal to the number of edges.
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G is said to be connected if, for every i, j P V , with i � j, there is an path in
G from i to j. The topological distance between vertices i and j, denoted dpi, jq,
is the length of the shortest path separating i and j in G.

An uncertain proximity relationship of length ` between i, j of type s P t0, 1u
will be denoted by uprsi,j,`. If (s � 1) then the UPR is of type max -UPR,
otherwise (s � 0) the UPR is of type min -UPR. Therefore, uprsi,j,` suggests that
the distance separating i and j in G verifies dpi, jq ¤ `, if s � 0 and dpi, jq ¥ `,
otherwise.

We can now pose the graph generation problem as follows: Given a set V of n
vertices, a corresponding degree sequence ∆ of n integers and a set of uncertain
proximity relationships (UPRs), is there a graph G comprised of the vertices in
V that realizes ∆ and satisfies the UPRs? In other words, can we construct an
edge set E such that ∆ is the degree sequence of G � pV,Eq and the set of UPRs
is satisfied?

3 Constraint Programming Background

Constraint Programming (CP) is a convenient paradigm to model and solve
highly combinatorial problems, that draws on a wide range of techniques from
Artificial Intelligence, Operations Research, Algorithms, and elsewhere. A con-
straint is a restriction, so, the basic idea in Constraint Programming (CP) is
that the user states the constraints and the decision variables, and a constraint
solver is used to solve them [5]. The best CP definition that can be given here is
the one described by Eugene Freuder : Constraint Programming represents one
of the closest approaches computer science has yet made to the Holy Grail of
programming: the user states the problem; the computer solves it. The following
equation describes the principle of the CP paradigm, consisting of two mainly
interconnected components, Modelling and Solving :

CP �Modelling � Solving. (1)

Modelling is the mental process of mapping an informal description of a
problem into a formal description in a particular formal system [9]. After this
mapping, the role of constraint solvers begins. They search the solution space
systematically, as with backtracking or branch and bound algorithms, or use
forms of local search which may be incomplete.

There are many real-life problems that require decision-making in the pres-
ence of constraints. Such problems can be modeled as Constraint Satisfaction
Problems (CSPs). More formally, as described by Tsang [22], a CSP is a problem
that can be defined by a triple pX,D,Cq, where X is a finite set of variables,
each of which is associated with a finite domain D, and a set of constraints C
that restricts the values that variables can simultaneously take.

A general-purpose constraint solver is used to solve the CSP by finding an
assignment of values to all the decision variables which satisfy the constraints,
while reducing the CSP problem to another one that is equivalent but more
simpler by means of inference. There is a wide choice of solvers available in the
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literature, which include Choco [14], Gecode [6], ECLiPSe [1], ILOG CP [11],
Minion [8]. The role of constraint solvers is to assign a value to each variable
satisfying all the constraints. Constraint solvers explore the solution space either
systematically, as with backtracking or branch and bound algorithms, or use
forms of local search [12]. In systematic search, the constraints are not merely
treated as tests, but play an active role by helping to discover the inconsistencies
early on, via the so-called constraint propagation. This latter process allows
constraint solver to eliminate parts of the search space and then makes the
search shorter.

The so-called ILOG CP solver, developed by IBM, is the one we use in this
work. It represents a main component of the integrated development environment
(IDE) CPLEX Optimization Studio. CPLEX Optimization Studio consists of the
OPL modelling and scripting language for developing optimization models, and
the IDE for running and testing optimization models. It also includes the opti-
mization engines CPLEX Optimizer and CP Optimizer for solving Mathematical
Programming (MP) and Constraint Programming (CP) models. In particular,
the modelling language OPL allows to state Constraint Programming (CP),
Logic Programming (LP) and Mixed Integer Programming (MIP), as well as
combinations of all of them. A strong side of OPL is that it allows a mathematical
encoding of the problem that is separate from the data, while offers several
basic branching strategies such as depth-first search which is the default search
strategy, and a number of other strategies including a best-first strategy.

3.1 Valued CSP formalism (VCSP)

Many real-life combinatorial problems can be naturally modeled and often effi-
ciently solved using constraint programming. However, in some real situations,
the classical CSP framework does not help. Indeed, it may occur that after
having listed the desired constraints against the decision variables, there is no
way to satisfy them all simultaneously. In this case, the instance is said to be
over-constrained. In contrast, in other situations, all the constraints can be easily
satisfied, which results in several solutions. Such solutions appear equally good,
and there is no way to select among them. These scenarios often occur when
constraints are used to formalize desired properties rather than requirements
that cannot be violated. Such desired properties are not faithfully represented
by classical constraints but should rather be considered as preferences whose
violation should be avoided as far as possible. To cope with similar situations,
classical constraints have been generalized to soft constraints, providing one way
to allow constraint relaxation. Therefore, a general formalism, called Valued
Constraint Satisfaction Problem (VCSP), has extended the CSPs to handle soft
constraints.

The Valued Constraint Satisfaction Problem (VCSP) formalism can be used
to solve optimization problems as well as over-constrained problems as they allow
constraint relaxation. A VCSP is simply obtained by annotating the constraint
of classical CSP with valuations denoting the costs of violations. More precisely,
VCSP extends the CSP framework pX,D,Cq by associating weights (or simply
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costs) to tuples (combinations of values that can simultaneously be taken by
variables). Generally, costs are specified by means of valuation structure defined
as a triple S � pE,`,¨q, where E is the set of cost values totally ordered by
¨. The maximum and minimum costs are denoted by J and K, respectively. `
is a commutative, associative and monotonic operation on E used to aggregate
costs. The commutativity and associativity of ` ensure that the evaluation of
an instantiation does not depend of the order in which the evaluations are done.
Monotony ensures that valuations cannot decrease when constraint violations
become more important.

More formally, a VCSP is defined by a quadruplet pX,D,C, Sq as follows [13]:

– X � tx1, . . . , xnu is a finite set of variables;
– D � tD1, . . . , Dnu is a finite set of value domains so that Dk is the domain

of xk;
– C � tC1, . . . , Cmu is a set of valued constraints. A constraint is a pair
pXk, θkq, where Xk � xxk1 , . . . , xkry � X is the constraint scope and θk :±
xPXk

Dx Ñ E is a cost function;
– S � pE,`,¨q is a valuation structure.

A variable xi P X must be assigned a value from its domain Di. If a valued
constraint is defined by a cost function whose domain is limited to tJ,Ku then
it is a hard constraint, otherwise it is a soft constraint. The arity of a valued
constraint is the size of its scope. The arity of a problem is the maximum arity
over all its constraints. The valuation of an assignment t to a subset of variables
V � X is given by:

ΘP ptq �
à

θ ptÓXkq
pXt,θqPC,Xk�V

, (2)

where Ó denotes the projection of t on the variables of Xk. Therefore, an optimal
global solution for a VCSP on n variables is an n-tuplet t, such that ΘP ptq is
minimal over all possible tuples. A VCSP has many variations which mainly differ
mainly by the valuation structure. The choice of the most appropriate valuation
structure depends on the characteristics of the problem to be formulated in
terms of VCSPs. Accordingly, a classical CSP can be seen as a VCSP variation
with a valuation structure S � pE,`,¨q, where E � t0,+8u, with standard
integer ordering ¨ and ` being the classical sum. The maximum and minimum
costs are respectively 0 and +8. In addition to classical CSPs, other VCSPs
variations have been proposed in the literature. Among them, Fuzzy CSPs
(FCSP) [20], Probabilistic CSPs (Prob-CSP) [4], Possibilist CSPs (Pos-CSP)
[21] and Weighted CSPs (WCSP) which is the VCSP variant chosen here to
solve the problem of uncertain graph generation.

3.2 The Weighted CSP variant (WCSP)

In Weighted Constraint Satisfaction Problems (WCSPs), tuples come with an
associated cost. This allows modeling optimization problems where the goal is
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to minimize the total cost of the proposed solution. More formally, a Weighted
CSP, is a Valued CSP where the valuation structure S � pE,`,¨q such that
E contains a set of integers t0, . . . , ku with standard integer ordering ¤. The
aggregation operation ` is defined by a ` b � minpk, a+bq. Moreover, for any
integer pair a and b such that b ¤ a, substraction a is defined as follows:

aa b

#
a - b, if pa � kq,

k, otherwise.
(3)

Without loss of generality, we assume that there exits a zero-ary valued con-
straint CH � p H, θH q dedicated to maintaining a lower bound for the minimum
cost of the problem.

4 Uncertain Graph Generation as WCSP

As stated in the introduction, the goal of this work is to generate the most likely
graph by assembling a set of vertices in all possible ways to ensure exhaustivity.
The assembled graphs must satisfy hard structural constraints coming from the
degree sequence, ∆, while optimizing a set of prescribed soft restrictions derived
from uncertain proximity relationships data (UPRs). In what follows, we encode
the likely graph to be generated as a simple adjacency matrix, and then we
attempt to post hard and soft constraints ensuring ∆ and UPRs.

Representing a graph with a given degree sequence is straightforward. We
opted for the adjacency matrix and we tried to post constraints in order to
enforce the available uncertain proximity relationships between certain vertex
pairs. To reach this goal based on uncertain connectivity information, we used
the Weighted CSP framework. A judicious choice that will allow us to express
soft restrictions. Before we proceed, we notice that the n vertices of the degree
sequence ∆ will be indexed by the integers from 1 to n.

4.1 The Basic Model

As stated above, a Weighted CSP is defined by a quadruplet pX,D,C, Sq. For
the purpose of encoding constrained uncertain graphs, the variable set, X, will
be composed of two subsets, which are the Adjacency variables and the proximity
variables, let us refer to them as A and Λ; we therefore, have X � AY Λ.

The first variable subset, that is A, contains the variables that handle the
adjacency of vertices in the graph. Hence, as shown in Figure 2, for a undirected
multi-graphG with n vertices, we create n�n variables denoted by ai,j , a variable
for each ordered pair of vertices pi, jq, which will be referred to as adjacency
variables. Setting ai,j to a non-zero value means that there is one or more edges
between vertex pair i and j; whereas, setting ai,j to 0 means that there is no
edge connecting i and j. The value domain of each variable ai,j depends of the
degrees, degpiq and degpjq, relative to i and j.

The second subset of X, that is Λ, contains the decision variables that will
encode UPRs. Recall that a UPR is a set of uncertain proximity relationship
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A G

�
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0 3 0 0 0 0 0
3 0 1 0 0 0 0
0 1 0 1 0 1 1
0 0 1 0 2 0 1
0 0 0 2 0 1 0
0 0 1 0 1 0 0
0 0 1 1 0 0 0

�
��������


Fig. 2. An adjacency matrix A (left) giving the values of the adjacency variables
corresponding to the degree sequence ∆ � x3, 4, 4, 4, 3, 2, 2y. The resulting target graph
is G (right).

on vertex pairs for which the topological distance is not known but bounded
by a given constant. More precisely, an element of UPR can be a max -UPR or
a min -UPR. For any element of UPR (a min -UPR or a max -UPR), involving
vertices i and j with bounding constant `, we introduce a set Λi,j of ` variables.
The domain of each of these variables is set to the list of vertices that may
correspond to the intermediate vertices on the shortest chain connecting vertex
i to vertex j. Therefore, we have Λi,j � tλi,j,1, . . . , λi,j,`u. The domain of each
variable λi,j,k could contain any vertex except i because the target graphs are
loopless.

In what follows, we detail the constraint set C, of the Weighted CSP quadru-
plet, which defines the constraints related to the simultaneous processing of all
structural restrictions, (hard) and (soft), in the problem.

4.2 Hard Constraints

Since the target graph comprises n vertices, is undirected and loopless, then we
post the following hard constraints:

1. Since our uncertain graphs are undirected, we post npn-1q{2 binary con-
straint. For each pair i   j, stating that ai,j�aj,i.

2. To forbid self-loops, we add the constraint ai,i� 0, for each 1¤i¤n.
3. Given the degree degpiq of vertex i, we can post a constraint

°n
j�1 ai,j�degpiq,

for each vertex i to ensure that the vertices have the correct degree.
4. If a pair of vertices can be related by more than one edge, this will result in

a multigraph and then we may have ai,j ¥ 2, for some vertex pairs pi, jq.
5. For each UPR of length ` and type s, denoted uprsi,j,` involving the vari-

able set Λi,j � tλi,j,1, . . . , λi,j,`u, there is a hard restriction portion on the
distance separating i and j in the target graph, depending on parameter s.
Hence, dpi, jq ¤ ` if UPR is a min -UPR (s � 0) and dpi, jq ¥ ` otherwise
(s � 1). This constraint can be expressed by the following two logical
formulas:

ps � 0q ùñ cardpλi,j,k � jq ¤ `, k : 1, . . . , `, (4)
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ps � 1q ùñ cardpλi,j,k � jq ¥ `, k : 1, . . . , `. (5)

4.3 Soft Constraints: UPRs

Recall that a Uncertain Proximity Relationship (UPR) can be min -UPR or
max -UPR. Expressing a UPR is a delicate task on account of the desired soft
preferences (maximizing and/or minimizing topological distances). In addition
to the two hard constraints expressed by equations (4) and (5), the encoding of
this task requires adding many variables and constraints according to the type
of prescribed proximity relationship s P t0, 1u. Each UPR, either be min -UPR
or a max -UPR, that constraint a pair of vertices (i, j), favors respectively short
or long topological distance that separates i from j in the target graph. The goal
here is to minimize or maximize that distance as much as possible with respect
to parameters ` and s.

In the Weighted CSP formulation proposed below, we provide a solution to
handle the uncertain nature of these preferences.

According to the type of UPR, min -UPR or a max -UPR, the idea consists
in placing j, respectively, as close, or as far, as possible to vertex i through an
objective based on cost functions. The objective value will vary depending on the
number of intermediate vertices between i and j. This can be achieved as follows:
Every uprsi,j,` is defined by a subset of ` variables Λi,j . The domain of each λi,j,k
is set to r1..nszi. In addition, we post, for each k: 1, . . . ,`-1, a `-unary constraint
pλi,j,k, θ

s
i,jq for which the cost functions that define the weighted constraint are

set as follows:

θsi,jpvq

$'&
'%
s, if v � j,

1-s, otherwise.

(6)

To connect the set of variables Λi,j to the adjacency variables, we post for
each variable λi,j,k, 1¤k¤`-1, the following ternary constraint:

p λi,j,k�u ^ λi,j,k+1�vq ùñ au,v�0. (7)

Also, the beginning of the separating chain entails the following constraint:

λi,j,1�u ñ ai,u�0. (8)

We can notice that the sum of costs of every variables subset Λi,j � Λ
depends on the topological distance separating i and j at hand. In fact, the sum
of the costs over all the λi,j,k is equal to the distance between i and j minus
one. This coding is extended to obtain the most probably uncertain graph, that
is, the one that minimizes the overall costs Φ, imposed by UPR set. This global
objective can be expressed as follows:

ΦpIq �
¸

pλi,j ,θsi,jq

`̧

k�1

θsi,jpIpλi,j,kqq. (9)

508

Mohamed Amine Omrani, Wady Naanaa

Research in Computing Science 148(8), 2019 ISSN 1870-4069



Note that, if the pair of vertices i and j are directly related in the uncertain
graph, the global objective value is equal to zero.

Example 1. Let’s take the problem of constructing G, a uncertain graph
composed of eight vertices t1, . . . , 8u and defined by ∆ � x2, 2, 2, 2, 2, 2, 2, 2y
as degree sequence. Let’s focus on the following four min -UPR restrictions
which state the following uncertain proximity relationship to minimize:
tupr08,3,3,upr07,4,4,upr01,2,3,upr01,6,4u.

This problem can be outlined by the basic model as described in Subsection
4.1 with Λ � t Λ8,3, Λ7,4, Λ1,2, Λ1,6u as proximity relationship variables to min-
imize. The applicability of the proposed WCSP encoding on this graph instance,
using the CP Optimizer library developed by IBM (https://www.ibm.com) which
provides a constraint programming engine, performs well, giving good results.
Figure 3 shows the obtained uncertain graph with its corresponding statistics.
Three seconds as CPU time and 0.79 MB of ROM memory are required to
generate G having a global objective Φ � 4, knowing that 1025 graph candidates
are obtained before the integration of min -UPRs restrictions.

Fig. 3. min -UPR results (first Attempt).

Example 2. Let’s again take the problem of constructing the most
likely graph, with the same input data given in Example 1, which are the set
of 8 vertices t1, . . . , 8u and the degree sequence ∆ � x2, 2, 2, 2, 2, 2, 2, 2y. This
time, our soft restrictions concern max -UPR and composed by four prescribed
max -UPR, which are upr18,4,5, upr17,3,5,
upr16,2,5, upr16,4,5.

As seen in Figure 4, by encoding the max -UPRs constraints described below
based on set Λ � tΛ8,4, Λ7,3, Λ6,2, Λ6,4u, we have gotten the most likely graph
G among 1025 candidates. The experiment statistical results indicate that it
takes 0.28 seconds of CPU running and 1.05 MB of Memory to generate G. The
global objective in output,Φ, is equal to 12.

Although widely accepted, one limitation of our previous WCSP encoding to
maximize UPRs is found. For every max-uprsi,j,` with s � 0, it must be imposed
that the path, taken into account by each subset of variables Λi,j , represents the
shortest path connecting i to j in the target uncetain graph G. Therefore, for
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Fig. 4. max -UPR results (second Attempt).

each λi,j,k the following hard constraint must be added to the set of constraints:

pλi,j,k � u^ u � jq ñ p
k-1ª
k1�1

aΛi,j,k1 ,Λi,j,k1+1
� 0q_

pai,λi,j,1
� 0q _ pau,j � 0q.

(10)

Fig. 5. max -UPR results (third attempt).

The results illustrated in Figure 5 confirm that it is necessary to add equation
10 below. Experiment statistics indicate that our solution for max -UPR takes
18.3 seconds of CPU time and 2.76 MB of ROM to effectively deal with the
problem cited in the example 2 resulting graph G with a global objective Φ � 17.
To this end, we give a last example which takes into account uncertain proximity
relationships information in a general way to ensure the generation of the most
likely uncertain graph. However, valid results are achieved when applying our
constraint-based encoding.

Example 3. Let’s one more time take the same problem proposed
in Example 1 and refined in Example 2. We focus here on both min -UPR
restrictions of Example 1 and simultaneously on max -UPR restrictions defined
as input data in Example 2. Hence, we have tupr08,3,3, upr07,4,4, upr01,2,3,
upr01,6,4, u to minimize and tupr18,4,5, upr17,3,5, upr16,2,5, upr16,4,5, u to maximize.

This problem can be outlined by the basic model as described in Subsection
4.1 that is made of two subsets which are the Adjacency variables (A) and the
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proximity variables (Λ). Thus, Λ � tΛ8,3, Λ7,4, Λ1,2, Λ1,6, Λ8,4, Λ7,3, Λ6,2, Λ6,4u.

The applicability of the proposed WCSP encoding on this graph generation
instance, using the CP Optimizer library developed by IBM (https://www.ibm.com)
which provides a constraint programming engine, performs well, giving good
results.

Fig. 6. UPR final results (fourth Attempt).

Figure 6 shows the obtained uncertain graph with its corresponding statistics.
Three seconds as CPU time and 2.8 MB of ROM memory are required to generate
G with a global objective Φ � 36. Know that 1025 graph candidates are obtained
before the integration of UPRs restrictions. The results of the experiment found
clear support for the soft constraint-based uncertain graph generation.

5 Experimental Results

To evaluate the effectiveness of our approach, we have tested it on several simple
graph instances. All tests have been done on a computer (Intel Core i5-8250U
CPU 1.60GHz 1.80GHz, 8 GB of RAM) running windows 10 (64 bit). During
graph generation, we used the ILOG CP Optimizer solver developed by IBM
(https://www.ibm.com), which provides a constraint programming engine.

Table 1 summarizes the experimental results obtained. For each instance of
degree sequence ∆, presented in a simplified version such as x42, 33, 22, 11y is
equivalent to x4, 4, 3, 3, 3, 2, 2, 1y, we first reported the corresponding number of
solutions (7). We also included the uncertain proximity input data (uprsi,j,`) with
their results in terms of memory usage (ROM) in MB and CPU time in seconds
(CPU).

In addition, the column entitled (Cost Φ), is related to the cost function
(global objective) of the Weighted-CSP formulation proposed in this paper. The
last two remaining columns show the results, obtained by the program after
considering UPRs, in terms of the most likely graph solution and respectively
its experimental statistic. What is worth noting in our program is that, when
we consider the uncertain proximity relationships in graph instances, we got
the most likely graph admitting in its structure the most plausible topological
distances over all pairs of vertices in interaction.
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Table 1. Experimental results obtained from our Weighted CSP formulation.

Degree
Sequence

7 uprsi,j,` ROM Cost Φ CPU
Graph
Solution

Statistics

x42, 32, 22, 12y 2480

Λ0
8,1,3, Λ0

6,1,3

Λ0
6,5,4, Λ0

2,7,4

Λ1
7,8,5, Λ1

6,8,5

Λ1
6,4,5, Λ1

3,5,5

27.68 21 2.30

x51, 41, 33, 22, 12y 11960

Λ0
1,9,3, Λ0

2,3,3

Λ0
8,1,3, Λ0

6,1,3

Λ0
6,5,4, Λ0

2,7,4

Λ1
1,8,5, Λ1

2,4,5

Λ1
7,8,5, Λ1

6,8,5

Λ1
6,4,5, Λ1

3,5,5

71.37 36 42.81

x51, 41, 32, 23, 13y 21080

Λ0
1,10,3, Λ0

2,4,3

Λ0
8,2,3, Λ0

6,2,3

Λ0
6,5,4, Λ0

2,7,4

Λ1
1,7,5, Λ1

2,3,5

Λ1
7,8,5, Λ1

6,4,5

Λ1
6,3,5, Λ1

3,4,5

102.12 45 50.09

x51, 41, 32, 24, 17y 62917

Λ0
1,10,3, Λ0

2,4,3

Λ0
8,2,3, Λ0

6,2,3

Λ0
6,5,4, Λ0

2,7,4

Λ0
10,12,3, Λ0

10,13,3

Λ0
10,15,4, Λ0

11,2,4

Λ1
1,7,5, Λ1

2,3,5

Λ1
7,8,5, Λ1

6,4,5

Λ1
6,3,5, Λ1

3,4,5

252.12 90 229.12

The results obtained from a series of tests on several instances can only
validate the proposed approach, allowing to generate uncertain graphs at a rea-
sonable time. Recall that our purpose is not to generate all graphs as quickly as
possible, but to encode a soft constraint that can be used with an external search
procedure on problems with side constraints, to consider proximity relationships
preferences.

In particular, we have not considered connectivity or symmetry, and there
are many symmetries in these problems. We view symmetry as a separate feature
that can be maintained independently. Paper [19] describes some explorations
of constraint programming in graph generation, concentrating on forcing the
graphs to be connected.
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6 Conclusions

In this paper, we used a variant of the Valued CSP approach to address the
graph generation problem under uncertainty. In particular, we have presented
a Weighted CSP formulation that allowed the integration of hard and soft
numerous structural constraints in a single framework. This study has shown
the advantage of adding fuzzy information or preferences, found in uncertain
proximity relationships between pairs of vertices, to select the most probably
graphs. From a practical point of view, we used the programming library named
ILOG CP. The experimental study showed that our constraint-based solution
is successful in coping with the hard problem of uncertain graph generation.
As a future work, we plan to take account of more complex uncertain data
like fuzzy degrees or uncertain subgraphs. Such data are frequently encountered
in real-world situations and may be very helpful in further limiting the set of
candidate solutions. To this end, once enhanced with the capability of handling
more uncertain data, our solution could be more useful in several real-world
applications.
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